RNA aptamers selectively modulate protein recruitment to the cytoplasmic domain of beta-secretase BACE1 in vitro.
نویسندگان
چکیده
The beta-amyloid peptide (Abeta) is a major component of the Alzheimer's disease (AD)-associated senile plaques and is generated by sequential cleavage of the beta-amyloid precursor protein (APP) by beta-secretase and gamma-secretase. Since BACE1 initiates Abeta generation it represents a valuable target to interfere with Abeta production and treatment of AD. While the enzymatic activity of BACE1 resides in the extracellular domain, the protein also contains a short cytoplasmic tail (B1-CT). This domain serves as a binding site for at least two proteins, the copper chaperone for superoxide dismutase-1 (CCS), and the Golgi-localized, gamma-ear-containing, ADP ribosylation factor-binding (GGA1) protein, and contains a single phosphorylation site. However, the precise role of the B1-CT for the overall biological function of this protein is largely unknown. Functional studies focusing on the activity of this domain would strongly benefit from the availability of domain-specific inhibitors. Here we describe the isolation and characterization of RNA aptamers that selectively target the B1-CT. We show that these RNAs bind to authentic BACE1 and provide evidence that the binding site is restricted to the membrane-proximal half of the C terminus. Aptamer-binding specifically interferes with the recruitment of CCS, but still permits GGA1 association and casein kinase-dependent phosphorylation, consistent with selective binding site targeting within this short peptide. Because phosphorylation and GGA1 binding to B1-CT regulate BACE1 transport, these RNA inhibitors could be applied to investigate B1-CT activity without affecting the subcellular localization of BACE1.
منابع مشابه
RNA aptamers selectively modulate protein recruitment to the cytoplasmic domain of b-secretase BACE1 in vitro
The b-amyloid peptide (Ab) is a major component of the Alzheimer’s disease (AD)-associated senile plaques and is generated by sequential cleavage of the b-amyloid precursor protein (APP) by b-secretase and g-secretase. Since BACE1 initiates Ab generation it represents a valuable target to interfere with Ab production and treatment of AD. While the enzymatic activity of BACE1 resides in the extr...
متن کاملExpression analysis of beta-secretase 1 (BACE1) enzyme in peripheral blood of patients with Alzheimer\'s disease
Background: Recent evidence has indicated that beta-secretase 1 (BACE1) is involved in the production of amyloid beta (Aβ) in patients affected with Alzheimer’s disease (AD). Therefore; the purpose of this study was to measure mRNA and plasma levels of BACE1 in AD patients, as an early diagnosis biomarker for such individuals. Methods: A total number of thirty AD patients and thirty normal sub...
متن کاملA copper-binding site in the cytoplasmic domain of BACE1 identifies a possible link to metal homoeostasis and oxidative stress in Alzheimer's disease.
The amyloidogenic processing pathway of the APP (amyloid precursor protein) generates Abeta (amyloid beta-peptide), the major constituent in Alzheimer's disease senile plaques. This processing is catalysed by two unusual membrane-localized aspartic proteinases, beta-secretase [BACE1 (beta-site APP-cleaving enzyme 1)] and the gamma-secretase complex. There is a clear link between APP processing ...
متن کاملLow-density lipoprotein receptor-related protein promotes amyloid precursor protein trafficking to lipid rafts in the endocytic pathway.
The major defining pathological hallmark of Alzheimer's disease (AD) is the accumulation of amyloid beta protein (Abeta), a small peptide derived from beta- and gamma-secretase cleavages of the amyloid precursor protein (APP). Recent studies have shown that beta- and gamma-secretase activities of BACE1 and presenilin, respectively, are concentrated in intracellular lipid raft microdomains. Howe...
متن کاملInhibition of BACE1 Activity by a DNA Aptamer in an Alzheimer’s Disease Cell Model
An initial step in amyloid-β (Aβ) production includes amyloid precursor protein (APP) cleavage via β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). Increased levels of brain Aβ have been implicated in the pathogenesis of Alzheimer's disease (AD). Thus, β-secretase represents a primary target for inhibitor drug development in AD. In this study, aptamers were obtained from combinatoria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 12 9 شماره
صفحات -
تاریخ انتشار 2006